class: center, middle, inverse, title-slide # Molecular gatekeeper discovery to link exposome with health outcomes through metabolomics ## Miao Yu ### 69th ASMS Conference, Pennsylvania ### 2021-11-04 --- ## Background - ### One compound, one outcome -> regular epidemiology study - ### One compound, multiple outcomes -> regular toxicology study - ### Multiple compounds, one outcome -> regular metabolomics/non-targeted analysis - ### Multiple compounds, multiple outcomes -> exposomics --- ## Exposures-Metabolites-Disease model <img src="https://raw.githubusercontent.com/yufree/presentation/gh-pages/figure/EMD.png" width="120%" style="display: block; margin: auto;" /> - ### What's the relationship between exposures and metabolites? - ### What's the relationship between small molecule and health outcome? - ### Which metabolites are the most important? --- ## Gatekeeper theory for EMD model: active metabolites <img src="https://yufree.github.io/presentation/figure/gkc.png" width="60%" style="display: block; margin: auto;" /> - #### Active metabolites will connect to other metabolites --- ## Gatekeeper theory for EMD model: gatekeeper <img src="https://yufree.github.io/presentation/figure/gkc.png" width="60%" style="display: block; margin: auto;" /> - #### The small molecule linked both exposures and other small molecule should be the frontier of biological process - #### Such molecules may regulate the adverse influences of exposures --- ## Adolescent girls blood samples - #### Breast Cancer and the Environment Research Program (BCERP) - #### 152 girls with data on exposures, health outcomes, and potential confounding variables - #### **Exposures** measured by CDC - PFCs (n-PFOS, Sm-PFOS, n-PFOA, PFHxS, PFNA) - trace elements (BCD, Cadmium; BMN, Manganese; BPBLead, Lead; BSE, Selenium; THG, Mercury) - #### **Metabolomics** by LC-Q-TOF-MS - 18750 (ZHP) and 25937 (RPN) features were found in plasma samples - #### **Health outcomes** - BMI/BMI group - age at menarche --- ## Gatekeeper molecular discovery - ### Step 1: Correlation clusters among metabolites - ### Step 2: Association between metabolites and exposures - ### Step 3: Screen the network structure to discover gatekeeper - ### Step 4: Association between gatekeeper and health outcome --- ## Step 0: From metabolomics features to independent peaks <img src="https://yufree.github.io/presentation/figure/peakcom.png" width="55%" style="display: block; margin: auto;" /> - #### Remove redundant peaks by GlobalStd algorithm - #### 964 (ZHP) and 1784 (RPN) independent peaks as potential metabolites .half[ Yu, M., Olkowicz, M., & Pawliszyn, J. (2019). Structure/reaction directed analysis for LC-MS based untargeted analysis. Analytica Chimica Acta, 1050, 16–24. doi:10.1016/j.aca.2018.10.062 ] --- ## Step 1: Correlation clusters among metabolites <img src="https://raw.githubusercontent.com/yufree/presentation/gh-pages/figure/mmnet.png" width="70%" style="display: block; margin: auto;" /> - #### Cutoff for correlation: Spearman’s rho > 0.9 - #### 62 (ZHP) and 98 (RPN) metabolites correlation network clusters found - #### 786 out of 964 metabolites have no correlation with other metabolites (ZHP) and 1416 out of 1784 metabolites have no correlation with other metabolites (RPN) --- ## Step 2: Association between metabolites and exposures <img src="https://raw.githubusercontent.com/yufree/presentation/gh-pages/figure/gkupset.png" width="87%" style="display: block; margin: auto;" /> --- ## Step 3: Screen the network structure to discover gatekeeper <img src="https://raw.githubusercontent.com/yufree/presentation/gh-pages/figure/gkpnp.png" width="90%" style="display: block; margin: auto;" /> - #### 28 (ZHP) and 43 (RPN) peaks connected with other peaks and exposures - #### 87 (ZHP) and 137 (RPN) peaks connected with exposures only --- ## Step 3: Screen the network structure to discover gatekeeper <img src="https://raw.githubusercontent.com/yufree/presentation/gh-pages/figure/gkall2.png" width="70%" style="display: block; margin: auto;" /> - #### 5 (ZHP) and 5 (RPN) annotated gatekeepers are associated with exposure - #### 2 annotated gatekeepers were associated with multiple environmental exposures --- ## Step 4: Association between exposure and health outcome | Exposure | BMI (β±SE) | BMI group (β±SE) | Age at menarche in years (β±SE) | Associated exposure(s) | |:------------------------------:|:----------:|:----------------:|:-------------------------------:|:----------------------:| | n-PFOA | -4.5±3.1 | -0.3±0.2 | 1.2±1.5 | - | | n-PFOS | **-4.2±2.1** | -0.3±0.2 | -0.2±1 | - | | **Gatekeeper** | | | | | | SM(d18:2/14:0) | **30.5 ±5.2** | **2.2 ±0.5** | **0.8 ±0.2** | n-PFOS | | Dehydroepiandrosterone sulfate | **6.0 ±2.5** | **0.5 ±0.2** | -0.1 ±0.1 | n-PFOA | | Androsterone sulfate | **10.8 ±2.4** | **1.0 ±0.2** | -0.1 ±0.1 | n-PFOA | | taurodeoxycholate | **-3.9 ±1.6** | **-0.3 ±0.1** | 0.1 ±0.1 | n-PFOA, n-PFOS | | GPC(P-18:0/20:4) | **-13.4 ±5.1** | **-1.2 ±0.4** | -0.1 ±0.2 | n-PFOS | --- ## Conclusion - ### Gatekeeper discovery could be used to screen metabolites associated with exposures and other metabolites - ### Some gatekeepers are sensitive to multiple environmental exposures - ### Gatekeepers can reveal mechanistic aspects of relationships between environmental exposures and metabolome to generate hypothesis for future health related studies - ### As a general data analysis framework, the mediation molecular can also be gene, protein, RNA, and/or metagenomics - ### enet package on GitHub: https://github.com/yufree/enet --- ## Acknowledgement .pull-left[ - #### Dr. Petrick's research group - #### Lam-ha Dang - #### Prof. Mary Wolff - #### Prof. Susan Teitelbaum - #### National Center for Environmental Health Laboratories at CDC ### Fundings - NIEHS P30ES23515 - CHEAR pilot program - U2C ES026561 - 1U2CES030859 ] .pull-right[ <img src="../figure/mssmlabmember.jpg" width="300px" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # Thanks ## Q&A ## miao.yu@mssm.edu